Algebra II Lesson 3: Transformation Rules for Algebraic Equations Mrs. Snow, Instructor

When a number is added or changed in an algebraic equation, a transformation will occur. The graph will be moved up or down, left or right, or be stretched or shrunk. These changes are known as **transformations.** When a parent function f(x) is transformed, it becomes a different function. Let's use t(x) for the transformed function.

f(x+h)	move the <i>x</i> - <i>value</i> h <i>units left</i>	graph will slide horizontally left	
f(x-h)	move the <i>x- value</i> h units right	graph will slide horizontally right	
a(f(x))	multiply the <i>y- values by</i> a	a > 0 vertical stretch/ steeper or narrower 0 < a < 1 fraction vertical shrink/flatter or wider	
-f(x)	graph will flip upside down	Reflection across x-axis	
f(x) + k	move <i>y- value</i> k <i>units up</i>	Vertical translation up k units	
f(x) - k	move <i>y- value</i> k <i>units down</i>	graph will slide vertically down k units	
Put it all together	$t(x) = a \cdot f(x-h) + k$		

Enter parent function into calculator, and then enter equation below, what happened?

1.	$t(x) = 2x^2$	$t(x) = \frac{1}{4}x^2$	$t(x) = x^2 + 3$	$t(x) = -x^2 + 3$
2.	$t(x) = x^2 - 3$	$t(x) = (x-3)^2$	$(x) = (x^2 + 3)$	$(x) = -(x^2 + 3)$
3.	t(x) = 2 x	t(x) = x+2	t(x) = x + 2	t(x) = - x + 2
4.	$t(x) = \frac{5}{x}$	$t(x) = \frac{1}{x+4}$	$t(x) = \frac{1}{x} + 3$	$t(x) = -\left(\frac{1}{x} + 3\right)$

The order of operations for transformations is similar to those of equations; we deal with the **multiplication** <u>before</u> **addition/subtraction**. For graphs of functions involving more than one transformation, apply each change in the following order::

- 1. Horizontal Translation
- 2. Stretching or shrinking
- 3. Reflection
- 4. Vertical shift up/down

Example 1	Describe eac	h combined	transformation.	in the	correct order.

a . $f(x - 2) + 3$	b. $\frac{1}{2}g(x) + 3$
c. $-2g(x) - 7$	d. $3h(x - 4) + 1$

When dealing with just a graph of a function, look at the x-y ordered pairs. For a horizontal shift, work with the x-value. For the stretch and vertical translations work with the y-value.

Example 2 Transform the function below to h(x + 4) - 2. Show each step.

