Algebra II

Lesson 3: Transformation Rules for Algebraic Equations
 Mrs. Snow, Instructor

When a number is added or changed in an algebraic equation, a transformation will occur. The graph will be moved up or down, left or right, or be stretched or shrunk. These changes are known as transformations. When a parent function $f(x)$ is transformed, it becomes a different function. Let's use $t(x)$ for the transformed function.

$f(x+h)$	move the x-value \boldsymbol{h} units left	graph will slide horizontally left
$f(x-h)$	move the x-value \boldsymbol{h} units right	graph will slide horizontally right
$a(f(x))$	multiply the y-values by \boldsymbol{a}	$a>0$ vertical stretch/steeper or narrower $0<a<1$ fraction vertical shrink/flatter or wider
$-f(x)$	graph will flip upside down	Reflection across x -axis
$f(x)+k$	move y-value \boldsymbol{k} units up	Vertical translation up k units
$f(x)-k$	move y-value \boldsymbol{k} units down	graph will slide vertically down k units
Put it all together	$\boldsymbol{t}(\boldsymbol{x})=\boldsymbol{a} \cdot \boldsymbol{f}(\boldsymbol{x}-\mathrm{h})+\boldsymbol{k}$	

Enter parent function into calculator, and then enter equation below, what happened?

| 1. $t(x)=2 x^{2}$ $t(x)=\frac{1}{4} x^{2}$ $t(x)=x^{2}+3$
 $t(x)=-x^{2}+3$
 2. $\quad t(x)=x^{2}-3$ $t(x)=(x-3)^{2}$ $(x)=\left(x^{2}+3\right)$ $(x)=-\left(x^{2}+3\right)$
 3. $\quad t(x)=2\|x\|$ $t(x)=\|x+2\|$ $t(x)=\|x\|+2$ $t(x)=-\|x\|+2$
 4. $t(x)=\frac{5}{x}$ $t(x)=\frac{1}{x+4}$ $t(x)=\frac{1}{x}+3$ $t(x)=-\left(\frac{1}{x}+3\right)$ |
| :--- | :--- | :--- | :---: |

The order of operations for transformations is similar to those of equations; we deal with the multiplication before addition/subtraction. For graphs of functions involving more than one transformation, apply each change in the following order::

1. Horizontal Translation
2. Stretching or shrinking
3. Reflection
4. Vertical shift up/down

Example 1... Describe each combined transformation, in the correct order.

a. $f(x-2)+3$	b. $1 / 2 g(x)+3$
c. $-2 g(x)-7$	d. $3 h(x-4)+1$

When dealing with just a graph of a function, look at the x - y ordered pairs. For a horizontal shift, work with the x-value. For the stretch and vertical translations work with the y-value.

Example 2 Transform the function below to $h(x+4)-2$. Show each step.

