Lesson 9-2
The Reciprocal Function Family

We all know what the reciprocal of a number is: one over the number, the reciprocal of \(a \) is \(\frac{1}{a} \). The reciprocal of \(5 \) is \(\frac{1}{5} \). Well, functions like inverse variations are in a reciprocal form, hence we call these functions reciprocal functions. Generally speaking we will see the \(x \) variable in the denominator: \(f(x) = \frac{1}{x} \). Of course reciprocal functions can and will be more complicated so we need to be familiar with the complete form of a reciprocal function which is: \(f(x) = \frac{a}{x-h} + k \) (note the restriction on the domain of \(x \neq h \)). Here again are \(h \) and \(k \) which translate the parent function.

Graphing

Graph \(y = \frac{8}{x} \)
Identify vertical and horizontal asymptotes.

Domain and Range

1. Make a table of values that include both positive and negative values.
2. Graph the points and draw a line.
3. Asymptotes will be at domain restrictions, that is where \(x \) cannot be equal to zero is a vertical asymptote. No matter how big or small \(x \) becomes, \(y \) will never be equal to zero, hence, the horizontal asymptote.

 \[This is a lot of points as you get more comfortable, you will be able to reduce the number, but you need at a minimum at least 3 points for each branch. \]

Asymptotes

Often we can see on the graph what the asymptotes are, but how can we look at the equation and determine the asymptotes? Let’s take a look at that general form of a reciprocal function; the “\(h \) and \(k \)” are significant: \(y = \frac{a}{x-h} + k \). The denominator cannot be equal to zero, so set it to zero and solve for \(x \). At \(x = h \) we have a vertical asymptote and at \(y = k \) we have a horizontal asymptote. So by putting the function into our general form, we can pluck off the asymptotes.

Also, if given a parent reciprocal function and asymptotes, we can develop an equation with the given asymptotes that will be a translation of the parent function.
Sketch the graph and identify the asymptotes

\[y = \frac{6}{x} \]

\[y = \frac{1}{x - 2} - 3 \]

\[y = \frac{4}{x + 5} - 2 \]

\[y = \frac{2}{x - 3} \]

Write an equation for the translation of \(y = \frac{7}{x} \)

Asymptotes are located at:

- \(x = 4 \) and \(y = -1 \)
- \(x = -1 \) and \(y = 3 \)