Lesson 9-1
Inverse Variation

When the ratio of two variables has a constant (unchanged) ratio, their relationship is called a **direct variation**. We say that \(y \) varies directly as \(x \). The constant ratio, \(k \), is called the **constant of variation**.

\[
\frac{y}{x} = k, \quad \text{or} \quad y = kx
\]

Note: in a linear situation the constant of variation is our slope:

\[
\frac{\text{rise}}{\text{run}} = \frac{y}{x}
\]

In direct variation problems, we will see that as one variable increases the other increases. Likewise as one decreases so will the other decrease.

Melissa’s weekly salary, \(s \), varies directly as the number of hours, \(h \), that she works. Write an equation that describes this relation. Solve for the constant of variation.

Melissa’s check shows she worked 32 hours and it is the amount of $363.20. What is her hourly rate?

According to Hooke’s Law, the force needed to stretch a spring is proportional to the amount the spring is stretched. If fifty pounds of force stretches a spring five inches, how much will the spring be stretched by a force of 120 pounds?

If \(y \) varies directly as \(x^2 \) and \(y = 8 \) when \(x = 2 \), find \(y \) when \(x = 1 \). Write the equation of variation.
The opposite of direct variation is known as **Inverse Variation**. In an inverse variation, the values of the two variables change in an opposite manner, that is, as one value increases, the other decreases.

\[xy = k, \quad \text{so} \quad y = \frac{k}{x}, \quad \text{or} \quad x = \frac{k}{y} \]

Let’s look at an example. How long will it take a cycler to bike 8 miles? Well that depends on his speed. A biker traveling at 8 mph can cover 8 miles in 1 hour. If the biker’s speed decreases to 4 mph, it will take the biker 2 hours to cover the same distance.

<table>
<thead>
<tr>
<th>Rate (mi/hr)</th>
<th>Time (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Notice that as the rate decreases, the time increases. Cut the rate in half, the time doubles. Our rate equation may be written as \(t = \frac{d}{r} \), at distance equal to 8 miles we get: \(t = \frac{8}{r} \).

Graphically we see can see the relation between time and rate (speed).

Given \(y \) varies inversely as \(x \). Write a variation function when \(y = 1.4 \) and \(x = 0.3 \)

So: \(k =? \) and our inverse variation function is?

Determine if the relationship between the values is direct variation, inverse variation or neither. Write an equation if possible.

<table>
<thead>
<tr>
<th>(x)</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>3.2</td>
<td>1.6</td>
<td>1.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.8</th>
<th>0.6</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>0.9</td>
<td>1.2</td>
<td>1.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>2</th>
<th>5</th>
<th>8</th>
<th>9.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>14</td>
<td>35</td>
<td>56</td>
<td>66.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>2</th>
<th>2.5</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>30</td>
<td>24</td>
<td>12</td>
<td>10</td>
</tr>
</tbody>
</table>
Write the function that models each inverse variation. Then find \(y \) when \(x = 9 \).

\[
x = 3 \text{ when } y = -5
\]

The inverse variation contains the ordered pair: \((6, 3)\)

Combined Variation

Variation is not only for linear relationships. We can just as easily have a situation where \(y \) varies inversely with \(x^2 \), such that: \(y = \frac{k}{x^2} \). Also, we can have situations where we have what is called a **joint variation**. Here a variable will vary jointly with two other variables: \(z = kxy \). Let’s put some of these combinations into table form:

<table>
<thead>
<tr>
<th>Combined Variation</th>
<th>Equation form</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z) varies jointly with (x) and (y)</td>
<td>(z = kxy)</td>
</tr>
<tr>
<td>(z) varies jointly with (x) and (y) and inversely with (w)</td>
<td>(z = \frac{kxy}{w})</td>
</tr>
<tr>
<td>(z) varies directly with (x) and inversely with the product (wy)</td>
<td>(z = \frac{kx}{wy})</td>
</tr>
</tbody>
</table>

Given that \(z \) varies directly with \(x \) and inversely with \(y \). Write a variation function when \(x = 6, y = 2, \text{ and } z = 15 \)

Given that \(z \) varies jointly with \(x \) and \(y \). Write a variation function when \(x = 2, y = 3 \text{ and } z = 60 \)

Describe the combined variation that is modeled by each formula:

\[a) \quad A = \pi r^2 \]
\[b) \quad h = \frac{2A}{b} \]
The volume V of a tetrahedron varies jointly with its altitude h and base of area b. Find the formula that models this joint variation. Given that the tetrahedron has an altitude of 5 cm, a base area of 6 cm², and a volume of 10 cm³.

Other stuff

Given a direct variation, find the missing variable for the pair of values: $(4,6), (x, 3)$

Given an inverse variation, find the missing variable for the pair of values: $(4,6), (x, 3)$