## Lesson 9-1 Inverse Variation

When the ratio of two variables has a constant (unchanged) ratio, their relationship is called a **direct variation**. We say that y varies directly as x. The constant ratio, **k**, is called the **constant of variation**.

$$\frac{y}{x} = k, \quad \text{or } y = kx$$
Note: in a linear situation the constant of variation is our slope:  

$$\frac{rise}{run} = \frac{y}{x}$$

In direct variation problems, we will see that as one variable increases the other increases. Likewise as one decreases so will the other decrease.

Melissa's weekly salary, **s**, varies directly as the number of hours, **h**, that she works. Write an equation that describes this relation. Solve for the constant of variation. Melissa's check shows she worked 32 hours and it is the amount of \$363.20. What is her hourly rate? According to Hooke's Law, the force needed to stretch a spring is proportional to the amount the spring is stretched. If fifty pounds of force stretches a spring five inches, how much will the spring be stretched by a force of 120 pounds?

If y varies directly as  $x^{2}$ , and y = 8 when x = 2, find y when x = 1. Write the equation of variation.

The opposite of direct variation is known as **Inverse Variation**. In an inverse variation, the values of the two variables change in an opposite manner, that is, as one value increases, the other decreases.

$$xy = k$$
, so  $y = \frac{k}{x}$ , or  $x = \frac{k}{y}$ 

Let's look at an example. How long will it take a cycler to bike 8 miles? Well that depends on his speed. A biker traveling at 8 mph can cover 8 miles in 1 hour. If the biker's speed decreases to 4 mph, it will take the biker 2 hours to cover the same distance.



Given y varies inversely as x. Write a variation function when y = 1.4 and x = 0.3 So: k = ? and our inverse variation function is?

Determine if the relationship between the values is direct variation, inverse variation or neither. Write an equation if possible.



## Write the function that models each inverse variation. Then find y when x = 9.

| x = 3 when $y = -5$ | The inverse variation contains the ordered pair: $(6,3)$ |
|---------------------|----------------------------------------------------------|
|                     |                                                          |
|                     |                                                          |
|                     |                                                          |
|                     |                                                          |
|                     |                                                          |
|                     |                                                          |

## **Combined Variation**

Variation is not only for linear relationships. We can just as easily have a situation where y varies inversely with  $x^2$ , such that:  $y = \frac{k}{x^2}$ . Also, we can have situations where we have what is called a **joint variation**. Here a variable will vary jointly with two other variables: z = kxy. Let's put some of these combinations into table form:

| Combined Variation                                         | Equation form       |
|------------------------------------------------------------|---------------------|
| z varies jointly with x and y                              | z = kxy             |
| z varies jointly with x and y and inversely with w         | $z = \frac{kxy}{w}$ |
| z varies directly with x and inversely with the product wy | $z = \frac{kx}{wy}$ |

Given that z varies directly with x and inversely with y. Write a variation function when x = 6, y = 2, and z = 15Given that z varies jointly with x and y. Write a variation function when x = 2, y = 3 and z = 60

Describe the combined variation that is modeled by each formula:

a)  $A = \pi r^2$ 

b) 
$$h = \frac{2A}{b}$$

```
The volume V of a tetrahedron varies jointly with its altitude h and base of area b. Find the formula that models this joint variation. Given that the tetrahedron has an altitude of 5 cm., a base area of 6 \text{ cm}^2, and a volume of 10 cm<sup>3</sup>
```

## Other stuff

Given a direct variation, find the missing variable for the pair of values: (4,6), (x,3)

Given an inverse variation, find the missing variable for the pair of values: (4,6), (x,3)