Algebra II Lesson 8-5: Exponential and Logarithmic Equations Mrs. Snow, Instructor

We have been looking at exponential equations and techniques to evaluate them, that is solve for x. We found that in a situation where for example: $3^x = 243$ we were able to get the right side into an exponential form and we found that $3^x = 3^5$. We also know a rule that says if the bases are equal the exponents must be equal; therefore x = 5.

Solve: $2^x = 30$

our equation:

<u>Plan A:</u> In order to solve this equation, we will need x to be down on the ground floor. This can be done with logarithms, so we get: $log_2 30 = x$. Here we have the problem that we don't have the where with all to solve a base 2 log!!

<u>Plan B:</u> **Golden rule of algebra**: What you do to the left do to the right. This combined with our **power property** of logarithms will allow us to solve for x. So let's look back at

$2^{x} = 30$	 Take the log of both sides With the power property, take the exponent down in front of the log as a coefficient Divide each side by the log2 Use a calculator to simplify
$6^{2x} = 21$	3 ^{<i>x</i>+4} = 101

$e^{2x+1} = 37$	$10^{x} = 19$

When **x** is part of the argument of a log function, a similar process may be used:

Solve: $log(3x + 1) = 5$	 Already in log form so make into an exponential function (base 10). Recognize that by rewriting into exponential form, we can unlock the x and get it out of the log!! solve for x by isolating the x term and by clearing coefficient
2logx = -1	$2 \log x - \log 3 = 2$

log(6r) = 3 = -2	ln(3x) - 6
$i0y_2(0x) - 3 = -2$	m(3x) = 0

CHANGE OF BASE

Now let's take a look at logs with bases other than 10. Evaluate $log_3 29$, there is no neat solution for this equation, unless we come up with another method. A method that works for these types of equations is called the **Change of Base Formula**.

Argument
$$log_b M = \frac{log_c M}{log_c b}$$

- the argument is kept in the numerator above the base in the denominator!Or, the base stays in the basement! Whew!

Letting **c** be our base 10, we may take a ratio of the log of the argument to the log of the original base. So our

equation above becomes:

$$\log_3 29 = \frac{\log_{29}}{\log_3} = 3.065$$

log₂7 log₃54