Mrs. Snow, Instructor
Last section we saw that $p H=-\log [H+]$ can also be expressed in exponential form: $10^{-p H}=\left[H^{+}\right]$. Since logarithms are inverses of exponents, you can derive the properties of logarithms from the properties of exponents:

Operation	Logarithms NEW	Example
product	$\log _{b}(m \cdot n)=\log _{b} m+\log _{b} n$	
quotient	$\log _{b} m / n=\log _{b} m-\log _{b} n$	
power	$\log _{b} m^{x}=x \log _{b} m$	

Example: express as a single logarithm

$\log 7+\log 2$	$\log _{2} 12-\log _{2} 3$
$\log _{3} 8-2 \log _{3} 6+\log _{3} 3$	$\ln 5-x \ln 2$

We can write as single logarithms and we can expand into multiple logarithms:

| $\log _{8} x^{3} y^{5}$ | $\log 8 \sqrt{x}$ |
| :---: | :---: | :---: |
| $\ln (7 x)^{3}$ | $\log _{m} 25 x^{4}$ |

Properties of logarithms may be applied and then the single logarithm may be evaluated:
$\left.\begin{array}{|l|l|l||}\hline \text { Simplify: } 3 \log _{2} 2-\log _{2} 4 & \begin{array}{l}\text { 1. apply product rule } \\ \text { or } \\ \text { 2. quotient rule } \\ \text { 3. simplify } \\ \text { 4. evaluate: }\end{array} \\ \text { You must read and understand the directions. } \\ \text { Depending on what is required, you will either } \\ \text { stop at this point or continue on to evaluate, } \\ \text { that is } x=\ldots .\end{array}\right]$.

Logarithms are uses to model sound. The intensity of a sound is the measure of the energy carried by the sound wave. The greater the intensity of a sound, the louder it seems. Loudness is measured in decibels with the formula: $L=10 \log \frac{\boldsymbol{I}}{I_{o}}$. (l is the intensity of the sound in watts per square meter and I_{0} is the lowest intensity sound that the average human can hear.)

Earplugs are advertised to block a certain amount of noise. One earplug brand claims to block the sound of noise as loud as 22 dB . A second brand claims to block 8 times that amount. If this claim is true, how many more decibels are blocked?
First off this is a subtraction problem as we are looking at "how many more." So let $\mathrm{L}_{2}=$ brand 2 loudness and
$\mathrm{L}_{1}=$ brand 1 loudness. Identify the relationship between the two brands: $I_{2}=8 I_{1}$, so using our equation for loudness:

