Lesson 8-4 Properties of Logarithms Mrs. Snow, Instructor

Last section we saw that pH = -log [H+] can also be expressed in exponential form: $10^{-pH} = [H^+]$. Since logarithms are inverses of exponents, you can derive the properties of logarithms from the properties of exponents:

Operation	Logarithms NEW	Example
product	$log_b(m \cdot n) = log_bm + log_bn$	
quotient	$\log_b m/n = \log_b m - \log_b n$	
power	$log_b m^x = x log_b m$	

Example: express as a single logarithm

<i>log</i> 7 + <i>log</i> 2	<i>log</i> ₂ 12- <i>log</i> ₂ 3
$log_3 8 - 2log_3 6 + log_3 3$	ln5 — xln2

We can write as single logarithms and we can expand into multiple logarithms:

$log_8 x^3 y^5$	$log 8\sqrt{x}$
l. (7)3	le z. 25.4
$ln(7x)^3$	$log_m 25x^4$

Properties of logarithms may be applied and then the single logarithm may be evaluated:

Simplify: 3log ₂ 2 – log ₂ 4	 apply product rule or quotient rule simplify evaluate: = x You must read and understand the directions. Depending on what is required, you will either stop at this point or continue on to evaluate, that is x=
<i>log</i> ₃ 3 + 5 <i>log</i> ₃ 3	6lne

Logarithms are uses to model sound. The intensity of a sound is the measure of the energy carried by the sound wave. The greater the intensity of a sound, the louder it seems. Loudness is measured in decibels with the formula: $L = 10 \log \frac{I}{I_o}$. (I is the intensity of the sound in watts per square meter and I_o is the lowest intensity sound that the average human can hear.)

Earplugs are advertised to block a certain amount of noise. One earplug brand claims to block the sound of noise as loud as 22 dB. A second brand claims to block 8 times that amount. If this claim is true, how many more decibels are blocked?

First off this is a subtraction problem as we are looking at "how many more." So let L_2 = brand 2 loudness and

 L_1 = brand 1 loudness. Identify the relationship between the two brands: $I_2 = 8I_1$, so using our equation for loudness: