Algebra II

Lesson 7.1-7.4 Review

Roots or radicals are the opposite operation of exponents. You can "undo" a power with a radical, and a radical can "undo" a power. For instance, if you square 2 , you get 4 , and if you "take the square root of 4 ", you get 2 ; if you square 3 , you get 9 , and if you "take the square root of 9 ", you get 3 .
$4^{2}=16 \& \sqrt{16}=\sqrt{4^{2}}=4 ; \quad 8^{2}=64 \& \sqrt{64}=\sqrt{8^{2}}=8 ; \quad \sqrt{81}=\sqrt{9^{2}}=9 ;$
$\sqrt{144}=$ \qquad
question: What if it is not a perfect square?
Look for perfect squares, simplifying the perfect square and leave the rest behind under the radical: $\sqrt{32}=\sqrt{16 \cdot 2}=\sqrt{4^{2} \cdot 2}=4 \sqrt{2}$
$\sqrt{180}=$ \qquad

Question: What if the radical has a number in the corner? Radicals other than a square root: we also see radicals that have a number in the corner of the radical sign. This is called the index: $\sqrt[n]{\varsigma}$ the index tells us how many times a number must be multiplied by itself under the radical, so to simplify.
$\sqrt[3]{\mathbf{8}}$ we look for a number mutliplied by itself 3 times so: $\sqrt[3]{8}=\sqrt[3]{2^{3}}=2$ We also must think about variables under the radical too. $\quad \sqrt[3]{x^{3}}=x ; \quad \sqrt[3]{8 x^{6}}=\sqrt[3]{2^{3}\left(x^{2}\right)^{3}}=2 x^{2}$;
$\sqrt[3]{64 x^{12}}=$ \qquad ; careful not a perfect cube: $\sqrt[3]{54 y^{7}}=$ \qquad
$\sqrt[4]{\mathbf{1 6}}$ we look for a number multiplied by itself 4 times, so: $\sqrt[4]{16}=\sqrt[4]{2^{4}}=2$, and don't forget about those variables! $\sqrt[4]{81 y^{12}}=\sqrt[4]{3^{4}\left(y^{3}\right)^{4}}=3 y^{3}$; remember that we may not have a number that can be multipled by itself 4 times so there will be extra nubers left behind under the radical: $\sqrt[4]{162 t^{15}}=\sqrt[4]{3^{4} 2\left(t^{3}\right)^{4} t^{3}}=3 t^{3} \sqrt[4]{2 t^{3}}$;
$\sqrt[4]{144 s^{5} r^{21}}=$ \qquad
Question: What do we do with radicals when they are combined with a fraction? First look at using the quotient property that allows us to combine the fraction under one radical and if possible simplify canceling out the denominator with factors from the numerator:

$$
\begin{aligned}
& \frac{\sqrt{20 x^{17}}}{\sqrt{5 x^{7}}}=\sqrt{\frac{20 x^{17}}{5 x^{7}}}=\sqrt{4 x^{10}}=\sqrt{2^{2}\left(x^{5}\right)^{2}}=2 x^{5} ; \\
& \frac{\sqrt{72 x^{12} y^{14}}}{\sqrt{2 x^{3} y^{2}}}=
\end{aligned}
$$

Question: What is rationalizing a denominator? When we get a fraction that has a radical in the denominator we need to multiply the denominator by another radical so that the radical simplifies to a rational denominator:
$\frac{\sqrt{3 x}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{6 x}}{\sqrt{2^{3}}}=\frac{\sqrt{6 x}}{2}$,
if you have a cube root in the denominator, deal with in a similar way:
$\frac{\sqrt[3]{5 x}}{\sqrt[3]{2}} \cdot \sqrt[\frac{3}{2^{2}}]{\sqrt[3]{2^{2}}}=\frac{\sqrt[3]{5 x 2^{2}}}{\sqrt[3]{2^{3}}}=\frac{\sqrt[3]{10 x}}{2}$

