Algebra II

Lesson 7.5: Solving Square Root and Other Radical Equations Mrs. Snow, Instructor

In previous chapters we were solving polynomials: $x^2 - 18 = 0$; $x^2 = 18$; $\sqrt{x^2} = \sqrt{18}$; $x = \pm 3\sqrt{2}$. This is what is called solving by square roots, because we need to take the square root of x.

Now, when we have the variable as a radicand or the variable has a fraction for an exponent (indicates that it is a root), we have what is called a **radical equation**. So to solve for our variable we would have to what???

Solve: $\sqrt{3x - 2} - 2 = 0$	Follow the same process we have always used: Start by isolating the variable term. First add/subtract numbers
	To get rid of the radical square both sides of the equation and simplify
	solve for x
$2 + \sqrt{3x - 2} = 6$	$3\sqrt{5x+1} - 6 = 0$

We can also solve equation where instead of a radical there is a fractional exponent. How? **Raise** each side of the equation to the reciprocal power of the exponent. With the following rule resulting:

$$(x^{m/n})^{n/m} = |x|$$

- ▶ The above rule generates two possible answers: $|x| = \pm$
- When both sides of an equation are raised to a power, a chance for extraneous solutions is introduced so... check solutions to verify presence of an extraneous solution.

A brief review of absolute values:

$ \bigcirc = 5$ $\bigcirc = \pm 5$ therefore if $ x + 3 = 5$ then: $x + 3 = \pm 5$ and $x + 3 = 5$ and $x + 3 = -5$ so! $x =??$	The "stuff" inside the AV can either be positive or negative, so there will be 2 possible solutions for x. The +/- solutions are the 2 possible solutions.
	Do both values of <i>x</i> work?
Let's see how this works, Solve: $2(x+3)^{\frac{3}{2}} = 54$	 Get rid of coefficient 2 by multiplying by reciprocal. The exponent is ³/₂, so we raise each side by the reciprocal of ²/₃ rule of exponents: exponent raised to an exponent, multiply the exponents. Now simplify the right side of the equation the rational exponent means we take the cube root of 27² or!! the cube root of 27 then squared. Set the absolute value equal to the ± the expression and solve
	CHECK ANSWERS!! THERE MAY BE A FALSE SOLUTION!!

If a calculator is available, checking your work will be quicker, but you need to do this without the assistance of technology. Enter each side of the original equation as a separate entry in your calculator's **Y**= function. Locate the intersection of the two lines to verify the solutions.

For the above example we find that there is only one solution for Y=27 as shown on the following graph:

Graph the equation $(x + 3)^{\frac{3}{2}} = 27$ on calculator enter Y1= $(x + 3)^{\frac{3}{2}}$ Y2= 27 WINDOW Xmin= -15 Xmax= 15 Scl= 5 Ymin= -10 Ymax= 40 Scl= 5 set windows to include y=27 on the graph we know that x = 6 or - 12 so set windows accordingly.

Equations can contain more than one radical expression

- ISOLATE one of the radicals.
- **IF** it contains an expression with a variable under a radical and a variable outside the radical, focus on isolating the variable under the radical by squaring each side.
- Well! Well! You may end up with a quadratic equation! You can handle that!
- Squaring and equation may introduce false solutions. *ALWAYS CHECK FOR EXTRANEOUS SOLUTIONS, PLEASE!*

Now Try:

$\sqrt{3x+2} - \sqrt{2x+7} = 0$	$(2x+1)^{1/3} - (2+3x)^{1/3} = 0$
$\sqrt{r+7} - r - 1$	$(2x + 1)^{0.5} - (3x + 4)^{0.25} = 0$
$\sqrt{x+7} - x = 1$	$(2x+1)^{0.5} - (3x+4)^{0.25} = 0$
$\sqrt{x+7} - x = 1$	$(2x+1)^{0.5} - (3x+4)^{0.25} = 0$
$\sqrt{x+7} - x = 1$	$(2x+1)^{0.5} - (3x+4)^{0.25} = 0$
$\sqrt{x+7} - x = 1$	$(2x+1)^{0.5} - (3x+4)^{0.25} = 0$
$\sqrt{x+7} - x = 1$	$(2x+1)^{0.5} - (3x+4)^{0.25} = 0$
$\sqrt{x+7} - x = 1$	$(2x+1)^{0.5} - (3x+4)^{0.25} = 0$
$\sqrt{x+7} - x = 1$	$(2x+1)^{0.5} - (3x+4)^{0.25} = 0$
$\sqrt{x+7} - x = 1$	$(2x+1)^{0.5} - (3x+4)^{0.25} = 0$
$\sqrt{x+7} - x = 1$	$(2x+1)^{0.5} - (3x+4)^{0.25} = 0$
$\sqrt{x+7} - x = 1$	$(2x+1)^{0.5} - (3x+4)^{0.25} = 0$
$\sqrt{x+7} - x = 1$	$(2x+1)^{0.5} - (3x+4)^{0.25} = 0$
$\sqrt{x+7} - x = 1$	$(2x+1)^{0.5} - (3x+4)^{0.25} = 0$