Algebra II

Lesson 7.5: Solving Square Root and Other Radical Equations
Mrs. Snow, Instructor
In previous chapters we were solving polynomials: $x^{2}-18=0 ; x^{2}=18 ; \sqrt{x^{2}}=\sqrt{18} ; x=$ $\pm 3 \sqrt{2}$. This is what is called solving by square roots, because we need to take the square root of x .

Now, when we have the variable as a radicand or the variable has a fraction for an exponent (indicates that it is a root), we have what is called a radical equation. So to solve for our variable we would have to what???

Solve: $\sqrt{3 x-2}-2=0$	Follow the same process we have always used: Start by isolating the variable term. First add/subtract numbers To get rid of the radical square both sides of the equation and simplify solve for x
$2+\sqrt{3 x-2}=6$	$3 \sqrt{5 x+1}-6=0$

We can also solve equation where instead of a radical there is a fractional exponent. How? Raise each side of the equation to the reciprocal power of the exponent. With the following rule resulting:

$$
\left(x^{m / n}\right)^{n / m}=|x|
$$

$>$ The above rule generates two possible answers: $|x|= \pm$
$>$ When both sides of an equation are raised to a power, a chance for extraneous solutions is introduced so... check solutions to verify presence of an extraneous

solution.

A brief review of absolute values:

$\|\square\|=5$ $\square= \pm 5$ therefore if $\quad\|x+3\|=5$ then: $x+3= \pm 5$ and $\quad x+3=5$ and $x+3=-5$ so! $x=$? ?	The "stuff" inside the AV can either be positive or negative, so there will be 2 possible solutions for x . The $+/$ - solutions are the 2 possible solutions. Do both values of x work?
Let's see how this works, Solve: $2(x+3)^{\frac{3}{2}}=54$	1. Get rid of coefficient 2 by multiplying by reciprocal. 2. The exponent is $\frac{3}{2}$, so we raise each side by the reciprocal of $\frac{2}{3}$ rule of exponents: exponent raised to an exponent, multiply the exponents. 3. Now simplify the right side of the equation the rational exponent means we take the cube root of 27^{2} or!! the cube root of 27 then squared. 4. Set the absolute value equal to the \pm the expression and solve
	CHECK ANSWERS!! THERE MAY BE A FALSE SOLUTION!!

$2(x-2)^{2 / 3}=50$	$3(x+3)^{3 / 4}-5=76$

If a calculator is available, checking your work will be quicker, but you need to do this without the assistance of technology. Enter each side of the original equation as a separate entry in your calculator's $\mathbf{Y}=$ function. Locate the intersection of the two lines to verify the solutions.

For the above example we find that there is only one solution for $\mathrm{Y}=27$ as shown on the following graph:
Graph the equation $(x+3)^{\frac{3}{2}}=27$
on calculator enter
Y1 $=(x+3)^{\frac{3}{2}}$
$\mathbf{Y 2}=27$
WINDOW Xmin $=-15$
Xmax= 15
Scl= 5
Ymin $=-10$
Ymax $=40$
$\mathrm{Scl}=5$

set windows to include $\mathrm{y}=27$ on the graph we know that $x=6$ or -12 so set windows
accordingly.

Equations can contain more than one radical expression

- ISOLATE one of the radicals.
- IF it contains an expression with a variable under a radical and a variable outside the radical, focus on isolating the variable under the radical by squaring each side.
- Well! Well! You may end up with a quadratic equation! You can handle that!
- Squaring and equation may introduce false solutions. ALWAYS CHECK FOR EXTRANEOUS SOLUTIONS, PLEASE!

Now Try:

$\sqrt{3 x+2}-\sqrt{2 x+7}=0$	$(2 x+1)^{1 / 3}-(2+3 x)^{1 / 3}=0$
$\sqrt{x+7}-x=1$	$(2 x+1)^{0.5}-(3 x+4)^{0.25}=0$

