Algebra II

Lesson 6.5/6.6 Theorems about Polynomial Functions
 Part I

Mrs. Snow, Instructor

The sections of 6.5 and 6.6 are being combined into a single topic with two parts. Part I will cover theorems that will help us to determine all possible roots when only some of the roots are known.

Irrational Root Theorem: Given a polynomial with rational coefficients and \sqrt{b} is irrational. If of $a+\sqrt{b}$ is a root, then you will also have the root of $a-\sqrt{b}$. ; these are called conjugates

Imaginary Root Theorem: If the imaginary number of $a+b i$ is a root of a polynomial with real coefficients, then the conjugate, $a-b i$ is also a root. Again note these are conjugates. These roots are called complex conjugates

To find these roots, you will reduce the polynomial down to linear factors and a quadratic factor by dividing the real factors into the original polynomial. When you get a quadratic factor, you will use the Quadratic Formula to solve.

A polynomial equation has the following roots, find two additional roots.

$2-\sqrt{7}$ and $3+2 \sqrt{6}$	$1+\sqrt{3}$, and $-\sqrt{11}$
$3-i$ and $2 i$	$12+3 i$, and $4-i$

Find $a 3^{r d}$ degree polynomial equation with rational coefficients that has the given roots

| 1 and $3 i$ | $2+i$ and -3 |
| :--- | :--- | :--- |
| | |

Find a $4^{\text {th }}$ degree polynomial equation with rational coefficients that has the given roots:

Fundamental theorem of Algebra

In 1797 Carl Gauss proved what is known as the Fundamental Theorem of Algebra. It states that a polynomial of degree $n \geq 1$ has at least one complex zero. In essence, the fundamental theorem of algebra guarantees that every polynomial has a complete factorization, if we are allowed to use complex numbers $(a+b i)$. Remember that a real number may be written as a complex number.

Fundamental Theorem of Algebra; translation!: An nth degree polynomial equation has exactly n roots; they may be rational, irrational, or complex.

Find the number of complex roots, and the possible number of real roots

$$
x^{5}+x^{3}+2 x^{2}-6=0
$$

$$
x^{10}+x^{8}+x^{4}+3 x^{2}-x+1=0
$$

