Algebra II Lesson 6.5/6.6 Theorems about Polynomial Functions Part I

Mrs. Snow, Instructor

The sections of 6.5 and 6.6 are being combined into a single topic with two parts. Part I will cover theorems that will help us to determine all possible roots when only some of the roots are known.

Irrational Root Theorem: Given a polynomial with rational coefficients and \sqrt{b} is irrational. If of $a + \sqrt{b}$ is a root, then you will also have the root of $a - \sqrt{b}$. ; these are called **conjugates**

Imaginary Root Theorem: If the imaginary number of a + bi is a root of a polynomial with real coefficients, then the conjugate, a - bi is also a root. Again note these are **conjugates**. These roots are called <u>complex conjugates</u>

To find these roots, you will reduce the polynomial down to linear factors and a quadratic factor by dividing the real factors into the original polynomial. When you get a quadratic factor, you will use the Quadratic Formula to solve.

A polynomial equation has the following roots, find two additional ro	oots.
---	-------

$2-\sqrt{7}$ and $3+2\sqrt{6}$	$1 + \sqrt{3}$, and $-\sqrt{11}$
3—i and 2i	12 + 3i, and 4 – i

Find a 3rd degree polynomial equation with rational coefficients that has the given roots

1 and 3i	2+i and -3

Find a 4th degree polynomial equation with rational coefficients that has the given roots:

Fundamental theorem of Algebra

In 1797 Carl Gauss proved what is known as the **Fundamental Theorem of Algebra.** It states that *a polynomial of degree* $n \ge 1$ has at least one complex zero. In essence, the fundamental theorem of algebra guarantees that every polynomial has a complete factorization, if we are allowed to use complex numbers (a + bi). Remember that a real number may be written as a complex number.

Fundamental Theorem of Algebra; *translation!:* An nth degree polynomial equation has exactly n roots; they may be rational, irrational, or complex.

Find the number of complex roots, and the possible number of real roots

 $x^5 + x^3 + 2x^2 - 6 = 0$ $x^{10} + x^8 + x^4 + 3x^2 - x + 1 = 0$