Algebra 2 Lesson 6-4: Solving Polynomial Equations Mrs. Snow, Instructor

Sum and difference of cubes are two important and useful factoring formulas that you will need to understand and use.

The Sum and Differences in Cubes:

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

 $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

Factor:

$x^3 + 64$	$8x^3 - 1$

To solve a polynomial equation: f(x)=0, we can use the same techniques we used in Ch. 5.

- 1. identify the Sum of cubes
- 2. Zero-Product Property
- 3. use the quadratic formula to solve

 $x^3 - 125 = 0$ $8x^3 - 1 = 0$

When solving higher-degree polynomials, consider using substitution to make factoring easier:

$x^4 + 11x^2 + 18 = 0,$	 Substitute: let u = x² ∴ u² = ???? factor using "u" now put back into the x form and solve for x
Factor and then solve: $2x^4 + 9x^2 + 12$ (use substitution)	Factor and solve: $x^4 + 8x^2 - 9 = 0$
Solve by factoring: $2x^4 + 18x^3 = 0$	$x^3 = 4x^2 + 12x$