Algebra 2 Lesson 6-3: Dividing Polynomials Mrs. Snow, Instructor

Dividing two numbers we use a process known as long division.

1512 ÷ 4	1649 ÷ 7

We can also polynomials:

$x^2 + 3x - 18 by x - 3$	 look at the first term in each polynomial. Here, ask, <i>x goes into x² how many times?</i> As with long division, multiply quotient by the divisor. and simplify; drop the next term from the dividend Repeat the process of bringing down the next term followed by dividing, multiplying, and subtracting
$x^2 + 2x - 30 \div x - 5$	$x^3 + 7x^2 - 4 \div x + 2$

When there is a remainder, the proper form for the factor is:

(dividend) = (divisor)(quotient) + remainder

How does this dividing help us?

- 1. Given a factor, we can simplify by dividing to find the factor pair.
- 2. We can verify if a polynomial is a factor of another polynomial. If the remainder is zero then our divisor is a factor!

Remainder Theorem

If we have a polynomial
$$P(x)$$
 and it is divided by $x - a$, then:
 $P(a) = number = remainder$

A second type of division we can use which is quicker than long division is known as **synthetic division**. This technique works only when we have a **linear binomial in the form of**

$$x-a$$
, that is $x-a$

$x^3 - 7x^2 + 15x - 9 \div x - 3$	$x^3 + 4x^2 + x - 6 \div x + 1$

Is (x + 2) a factor of:

$2x^2 + 7x + 6$	$x^3 - 5x - 10$

The volume in cubic feet of a workshop's storage chest can be expressed as the product of its three dimensions by the given function: $V(t) = x^3 + 7x^2 + 10x$. The depth of the chest is given by the function (x + 2). Find the linear expressions for the other two dimensions.

Find P(4) for $P(x) = x^4 - 5x^2 + 4x + 12$ Now solve for P(-4)use synthetic division: Find P(-1) for $P(x) = 2x^4 + 6x^3 - 5x^2 + 60$