Algebra 2

Lesson 6-3: Dividing Polynomials

Mrs. Snow, Instructor
Dividing two numbers we use a process known as long division.

$1512 \div 4$	$1649 \div 7$

We can also polynomials:

| $x^{2}+3 x-18$ by $x-3$ | |
| :--- | :--- | :--- | :--- | :--- |
| 1. look at the first term in each polynomial.
 Here, ask, x goes into x^{2} how many times?
 2. As with long division, multiply quotient by
 the divisor.
 and simplify; drop the next term from the
 dividend
 3. Repeat the process of bringing down the
 next term followed by dividing, multiplying,
 and subtracting | |
| $x^{2}+2 x-30 \div x-5$ | $x^{3}+7 x^{2}-4 \div x+2$ |

When there is a remainder, the proper form for the factor is:

$$
\text { (dividend) }=(\text { divisor })(\text { quotient })+\text { remainder }
$$

How does this dividing help us?

1. Given a factor, we can simplify by dividing to find the factor pair.
2. We can verify if a polynomial is a factor of another polynomial. If the remainder is zero then our divisor is a factor!

Remainder Theorem

If we have a polynomial $P(x)$ and it is divided by $x-a$, then:

$$
P(a)=\text { number }=\text { remainder }
$$

A second type of division we can use which is quicker than long division is known as synthetic division. This technique works only when we have a linear binomial in the form of
$x-a$, that is $x-a$

$x^{3}-7 x^{2}+15 x-9 \div x-3$	$x^{3}+4 x^{2}+x-6 \div x+1$

Is $(x+2)$ a factor of:

$2 x^{2}+7 x+6$	$x^{3}-5 x-10$

The volume in cubic feet of a workshop's storage chest can be expressed as the product of its three dimensions by the given function: $V(t)=x^{3}+7 x^{2}+10 x$. The depth of the chest is given by the function $(x+2)$. Find the linear expressions for the other two dimensions.

| Find $P(4)$ for $P(x)=x^{4}-5 x^{2}+4 x+12$ | Now solve for $P(-4)$ |
| :--- | :--- | :--- |
| use synthetic division: | |
| | |
| | |

Find $P(-1)$ for $P(x)=2 x^{4}+6 x^{3}-5 x^{2}+60$

