Algebra 2

Lesson 5-8: The Quadratic Formula

Mrs. Snow, Instructor

So far, you have learned that a quadratic equation can be solved by graphing, factoring, and square rooting. You also can solve for x's that are complex. There is yet another method of factoring called the Quadratic Formula. I call it the "Queen Bee," because it is the Queen; it may be used to factor any quadratic equation.

$$
\begin{aligned}
& \text { Given a quadratic equation, } a x^{2}+b x+c=0 \text {, the roots or zeros can be found by the } \\
& \text { formula } \\
& \qquad \boldsymbol{x}=\frac{-\boldsymbol{b} \pm \sqrt{\boldsymbol{b}^{2}-\mathbf{4} \boldsymbol{a} \boldsymbol{c}}}{2 \boldsymbol{a}}
\end{aligned}
$$

First off....
Simplify the square roots:

$\sqrt{12}$	$\sqrt{30}$	$\sqrt{72}$

Solve using the quadratic formula:
(x+4x+3=0
 many and what kind of roots a quadratic equation will have.

- If $b^{2}-4 a c>0$, then the quadratic equation will have TWO real roots.
- If $b^{2}-4 a c=0$, then the quadratic equation will have ONE real root.
- If $b^{2}-4 a c<0$, then the quadratic equation will have NO real roots.

How many and what kind of roots do the quadratic equations have?

$y=2 x^{2}+x+28$	$2 x^{2}+7 x-15=y$	$x^{2}-12 x+36=y$

