Algebra 2 Lesson 5-4: Factoring Quadratic Expressions Mrs. Snow, Instructor

Factoring is a way we break down a number or expression into a product of its factors or factor pairs.

Example: write the factor pairs for 12: 1 · 12, 2 · 6, and ____, ____

			c .			<i>c</i>				e .	
In a	a quadratic e	quation we	can often	simplify	∕it b∖	/ tactoring	r out the s	preatest	common	factor	GCE
	a quada ació es	quation ne	can oreen	Shiphi		140001112	, our the	Breatest	0011111011		

$5x^2 + 20x - 25$	$7p^2 + 21p$	$s^3 + 2s^2 - 7s$

Factoring a quadratic is also possible. Remember, in Alg I you took 2 binomials and multiplied or FOIL to get the quadratic, well here we take the quadratic and break it down into the binomial pairs. Given a trinomial quadratic in the form of $ax^2 + bx + c$, it may be possible to break it down into two binomial expressions

$x^2 + bx + c$ when "c" is positive:

find two numbers that will multiply to equal the constant term "c", and add up to equal "b"

$x^2 + 10x + 24$			 Make a list of all the factors of 24 Which factor pairs add up to equal the coefficient 		
(x)(x)	$() \cdot () = 24 \qquad () + () = 10$		
check: (x + 4)(x + 6) $x^{2} + 6x$ +4x + 24 = $x^{2} + 10x + 24$			 3. Now make a "template" of 2 sets of parentheses 4. Recognize that the first term of each binomial will be an x 5. Now you can fill in the constant terms with the 2 values that multiply out to 24 and add up to 10! 6. CHECK YOUR WORK!!!!!! 		

$x^2 + bx - c$	when "c" is negative:	find two numbers that will multiply to equal	"-c" but when subtracted will
equal "b"			

$x^2 + 7x - 18$	
To have a positive 7 we will make 2 negative: Check: $x^2 - 2x$ +9x - 18 = $x^2 + 7x - 18$	 Make a list of all the factors of 18. Recognize that we will be looking at a positive factor and a negative factor! (-) × (+) = (-). Which factor pair has the difference of 7? Then place signs such that the difference is positive7! Now make a "template" of 2 sets of parentheses. Recognize that the first term of each binomial will be an x. Now you can fill in the constant terms with +and -signs inserting the factor pairs such that the 2 values that multiply out to -18 and have a difference of +7.

Factor:	$x^2 - 6x + 8$	$x^2 - 8x - 20$

When $ax^2 + bx + c$, (where $a \neq 1$)

Factor: $ax^2 + bx + c$ $4x^2 + 16x + 15$	 Multiply a and c Make a table of the f Which factor pair wh equal to the coefficient <u>Rewrite the linear ten</u> factor pairs of a and c. Now cut the quadrat <u>Factor the left side</u> an factor the right side sep WHEN FACTORED, YO THE SAME BINOMIALS! <u>Factor both</u>: factor of binomial. You have a factored of Remember: factor the left right, and factor both side 	Factor pairs of <i>ac</i> then added is <i>b</i> ? <u>rm using the</u> tic in half nd harately. OU MUST HAVE ! out the common quadratic! with eft, factor the des!	$a = 4, c = -\frac{ac}{ac} = -\frac{ac}{Factor pairs:}$ $a \times c = 60$ $1 \cdot 60$ $2 \cdot 30$ $3 \cdot 20$ $4 \cdot 15$ $5 \cdot 12$ $6 \cdot 10$	15, and b = 16 $4(15) = 60$ $a + c = 15$ sum=61 sum=32 sum=19 sum=17 $6 + 10 = 16$	Getting closer!!
First factor out the negative leadin $-4x^2 - 4x +$	ng coefficient!!! 15		$3x^2 - 16x - 1$	2	

Perfect Square Trinomials
$$a^2 + 2ab + b^2 = (a + b)^2$$
 or $a^2 - 2ab + b^2 = (a - b)^2$

When we square a binomial we will get a quadratic that is in the form of a **perfect trinomial square.** Study this form so that you will recognize it and take advantage of the short cut.

- 1) Write the first and third terms as perfect squares
- 2) Write or attempt to write the second term in the form of $2 \cdot a \cdot b$

Difference of Two Squares

$$a^2 - b^2 = (a + b)(a - b)$$

Factoring Flow Chart for: $1x^2 + bx + c$

