Algebra 2

Lesson 5-3: Transforming Parabolas
Mrs. Snow, Instructor

Parent function: $y=x^{2}$

Vertex form $-\boldsymbol{y}=\boldsymbol{a}(\boldsymbol{x}-\boldsymbol{h})^{2}+\boldsymbol{k}$
Vertex: (h, \boldsymbol{k})

Just as our other functions, the x-element of the vertex translates the parabola horizontally left or right. The y-element translates the parabola vertically up or down.

Note: While we like to graph using the calculator, using the vertex form in some cases may even be faster than using a graphing calculator.

$$
\text { When } y=x^{2} \quad \text { or } \quad y=a(x-h)^{2}+k:
$$

1. $y=-a x^{2}$	reflection across the x-axis (flips upside down) Negative is a sad face.
2. $a>1$	the graph stretches (gets skinny)
3. $0<a<1$ (a fraction)	the graph will shrink (gets broad or wide)
4. $h>0$ or $h<0$ remember the eqquation form! $\left(x-\sum_{n} h\right)^{2}$	positive h shift right negative \mathbf{h} graph shifts left
5. $\mathrm{k}>0$ or $\mathrm{k}<0$	positive \mathbf{k} shift up negative \mathbf{k} shift down
6. vertex $=(\mathrm{h}, \mathrm{k})$	
7. axis of symmetry: line $x=h$	

graph each equation, notice what happens with h :

$$
\begin{gathered}
y=(x+3)^{2} \\
y=x^{2} \\
y=(x-5)^{2}
\end{gathered}
$$

Translation:
Graph: $f(x)=(x-2)^{2}+3$
The vertex is:
Notice that the graph has both a vertical and a horizontal shift. The graph moves \qquad 2 units and 3 units.

Reflection:

Graph: $g(x)=-(x-2)^{2}+3$?
The vertex is:
This is called a reflection along the horizontal axis. We can generalize by saying that any quadratic equation
 with a negative sign in front of the x^{2} term will open downward or be upside down.

Leading Coefficient:
Graph $y=3 x^{2}$
Notice the effect of a number in front of a quadratic equation: the graph got skinnier (compressed).

Graph $y=\frac{1}{4} x^{2}$,
The graph gets fatter (stretches).
In general, if the constant, " a ", is larger than 1 the graph will get skinny.

For values between 0 and 1 the graph will get wider.

Write an equation of a parabola in vertex form from a graph

Graph, state domain and range $y=2(x+1)^{2}-4$	
Convert an equation to vertex form: $y=-3 x^{2}+12 x+5$	$y=x^{2}-8 x+21$

