Algebra 2

Lesson 5-1: Modeling Data with Quadratic Functions
Mrs. Snow, Instructor

Is the graph to the left a function? How so?
What is the name of the function graphed?
This graphed shape is called a parabola and the function modeled is known as a quadratic function. What is the domain of a quadratic function?

Range????
The function in standard form is:

$f(x)=a x^{2}$	$+b x$	+
quadratic	linear	
term	term	

A quadratic function will have this form. Yes, " b " can equal 0 and " c " can equal 0 . If " a " equals 0 then it is no longer a quadratic, but linear.

Axis of symmetry - a line that divides a parabola into two parts that are mirror images of each other. The axis of symmetry will be a vertical line with an equation in the form of $\mathbf{x}=$ real number and will be equal to the \mathbf{x} value.
Vertex - is where the minimum or maximum value of the function and will occur at the value of the y point. This is the point where the direction of the parabola changes from decreasing to increasing or increasing to decreasing.
Minimum or Maximum - the value of y at the vertex
Corresponding point - points on a parabola that are the reflection of other points on the parabola.
e.g. on the above graph $P(-2,-1)$ corresponds to $P^{\prime}\left((0,-1)\right.$, plot P^{\prime}, What is Q^{\prime} ?

Identify the vertex, minimum or maximum, axis of symmetry and the domain and range for the graphs.
Identify the corresponding points for \mathbf{P} and \mathbf{Q}

If a calculator is allowed, you may find the minimum/maximum point of the parabola:

1. Using the $\mathbf{Y}=$ button enter the equation.
2. Hit GRAPH Note: the stat plots must be off for the graphing function to work.
3. Adjust the window of the view screen under ZOOM or WINDOW in order to view the vertex.
4. Hit $\mathbf{2}^{\text {nd }}$ TRACE 3 minimum or 4 maximum. The view screen will ask for the left bound, arrow over so that the blinking star (asterisk) is on the left side of the vertex. ENTER You will be asked for the right bound, and again arrow over so that the asterisk is now on the right side of the vertex. ENTER ENTER and the view screen will identify the x and y coordinates for the vertex.

Given 3 ordered pairs, a quadratic equation may be found:

1. Substitute the values of x and y into the quadratic equation: $y=a x^{2}+b x+c$
2. With the 3 resultant equations you have a system of 3 linear equations and may be solved by methods learned in Chapter 3 and 4 or in the "Final Word on Chapter 4" lesson.
3. Using the augmented matrix form, key in the coefficients and constant into a 3×4 matrix on the calculator and find the reduced row-echelon form of the matrix, thus finding the solutions to the variables which are in fact the coefficients of the quadratic equation!

Example: Use the calculator to write a quadratic equation with the following points:

x	2	3	4	
y	3	13	29	

$$
(1,-2),(2,-2),(3,-4)
$$

Here we use different methods to solve:

Method 1:

1. A system of 3 equations and 3 unknowns may be solved with elimination or substitution.

Method 2:

1. Write as a matrix equation and solve.

Method 3:

1. Use the stat plot function on the calculator to plot the original given points
2. A quadratic regression (calculator) will yield the equation of best fit.

Method 3:

Even with the limited knowledge we have from just completing one section, we can still come up with some information that describes a graph of a quadratic and choose an equation that represents the function modeled.

What is the vertex?
What is the y-intercept?
Leading coefficient, $+/-$?
a. $f(x)=-x^{2}+6 x+2$
b. $f(x)=-x^{2}-6 x-2$
c. $f(x)=-x^{2}-6 x+2$
d. $f(x)=-x^{2}+6 x-2$

What is the vertex?
What is the y-intercept?
Leading coefficient, $+/-$?
a. $f(x)=x^{2}-8 x-9$
b. $f(x)=x^{2}+8 x+9$
c. $f(x)=x^{2}+8 x-9$
d. $f(x)=x^{2}-8 x+9$

