Algebra 2 Lesson 4-3: Matrix Multiplication Mrs. Snow, Instructor

Scaler Multiplication:

Consider doubling the cost of movie tickets as shown below.

Children	\$3.50	doubles to		Children		\$7.00
Adult	\$8.50			Adult		\$17.00
Sr. Citizens	\$5.50			Sr. Citizens		\$11.00
Mathematically,	2 × [3.50	8.50	5.50]=[7	.00	17.00	11.00]

Notice that every entry was doubled. In general, multiplying or dividing a matrix by a constant factor is called **scaler** multiplication. The word "scaler" comes from the root word "scale."

Example: Simplify $-3 \times \begin{bmatrix} 3 & -2 & 5 \\ 4 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -9 & 6 & -15 \\ -12 & 0 & 3 \end{bmatrix}$ (simply "distribute" the -3 to each element in the matrix)

Matrix multiplication is a bit more complicated. To multiply two matrices the column size of the first matrix must match the row size of the second matrix. In other words:

size of final matrix Row x Column and Row x Column *must match*

To multiply two matrices:

- 1. Check for a "match" and note the "order;" No match means no multiplication is possible
- Multiply first <u>row</u> of left matrix with first <u>column</u> of right matrix. Now sum up all products. This becomes
 the element e₁₁ in our matrix. For the element e₁₂, repeat multiplication of first row of left matrix with
 <u>second</u> column of right matrix. Sum up products. Note the element address tells you that you will need to
 multiply the row 1 elements with the column 2 elements.
- 3. Repeat until all **rows** of left matrix have been multiplied with all **columns** of the right matrix.

