Algebra 2

Lesson 4-2: Adding and Subtracting Matrices
Mrs. Snow, Instructor
Plain and simple, matrices are rectangular arrangements of numbers. These numbers may be data or they may be numbers from an equation. Today, matrices are used in many areas of work and research. Some of the many areas include electrical circuits, battery power outputs, and 2-dimensional and 3-dimensional screen images that create realistic movements. In geology matrices are used in seismic surveys. Real world data like banking, profit and loss, movie ticket sales, and on a big level, gross domestic profit! The base element for robot movement is matrices.

Vocabulary

matrix - rectangular arrangement of numbers in rows and columns
element - each individual number in a matrix is an element
dimensions - describes the number of rows and columns that are the given matrix

ROW X COLUMN - R X C - This tells us how many rows and how many columns. An element has an address in the form of RC.

Rules for Matrix Addition/Subtraction:

1. To add two matrices, they must have the same dimensions.
2. Add corresponding elements together.
3. A number outside the brackets is scalar multiplication treat it as distribution to all elements

Example

Find the sum or difference

$$
\left[\begin{array}{ccc}
2 & -4 & 3 \\
0 & 1 & 12
\end{array}\right]+\left[\begin{array}{ccc}
0 & 7 & -2 \\
13 & -1 & 5
\end{array}\right]
$$

$$
2\left[\begin{array}{cc}
6 & 5 \\
10 & 0
\end{array}\right]-\left[\begin{array}{cc}
-4 & 3 \\
0 & -1
\end{array}\right]
$$

Properties of Matrix Addition:

If A, B, and C are $m \times n$ matrices (m rows and n columns) then:

1. $A+B$ is an $m \times n$ matrix
2. $A+B=B+A$
3. $(A+B) C=A+(B+C)$
4. There is a unique matrix O such that $O+A=A+O=A$
5. For each A there exists a unique Additive Inverse Property

Closure Property
Commutative Property of Addition
Associative Property of Addition
Additive Property of Addition opposite, $-A, A+(-A)=0$

Matrix equations

Matrix equations are solved much like an equation in one variable, only the variable is an unknown matrix and the numbers are matrices!!

Solve

$$
\left[\begin{array}{cc}
2 & 1 \\
0 & -3
\end{array}\right]=\left[\begin{array}{cc}
4 & 5 \\
-10 & 2
\end{array}\right]-X \quad 2 X+\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]=\left[\begin{array}{c}
7 \\
-5 \\
-1
\end{array}\right]
$$

Finding the value of a variable

$$
\left[\begin{array}{cc}
a & 2 b \\
c-2 & d+3
\end{array}\right]=\left[\begin{array}{cc}
5 & -7 \\
10 & 10
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
5 & 1 \\
0 & 2
\end{array}\right]+\left[\begin{array}{cc}
2 & -13 \\
-10 & -10
\end{array}\right]=\left[\begin{array}{cc}
2 x+1 & -4 x \\
5 z & 2.5 z-x
\end{array}\right]
$$

