Algebra 2

Lesson Ch4: Matrices — Solving systems of 3 Variables By Hand

Mrs. Snow, Instructor

All systems of 3 equations would be really nice to solve if they were all like:
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Gaussian Elimination

Gaussian Elimination (aka row echelon form) is an effective algorithm (a step by step procedure
for calculations) that may be used to reduce systems of 3 equations into a triangular shaped
form:
x—2y+z=—4

In a college level algebra class you would learn how to perform Gaussian elimination to a matrix,
in this class we will work with systems of equations. We saw last class that systems are easily
converted to matrix equations.

To perform Gaussian Elimination on a system of equations, one uses a sequence of elementary
row operations to modify the system until the last row of the system is a variable equal to a
number, the second row is 2 variables equal to a number and the 1% row is 3 variables equal to a
number.

There are three types of elementary row operations:
1) Swapping two rows,

2) Multiplying a row by a non-zero number, and

3) Adding a multiple of one row to another row.

NOTE: You will use one row to change another without actually changing the one
row. For example: Below we will add — 4 times row 3 to row 2 so to change row 2.

= Let's put the words to a problem:
Solve using the Gaussian Method:
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X—2y+ 3z= 43'\
2x+y—4z=3

3x+4y—z=-2
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