Algebra II Chapter 3 Test Review

Show ALL work on separate paper. You should ONLY use a calculator for problems \#10 and \#16. Reviews are due on test day - NO LATE REVIEWS ACCEPTED!

Solve the system by graphing (example 1, p.121)

1. $\left\{\begin{array}{l}-x-3 y=3 \\ 3 x-y=-9\end{array}\right.$
2. $\left\{\begin{array}{l}-x-y=-7 \\ 4 x-4 y=-4\end{array}\right.$

Without graphing, classify each system as independent, dependent, or inconsistent (example 3 p.122).
3. $\left\{\begin{array}{l}-2 x-y=9 \\ 3 x-4 y=-8\end{array}\right.$
4. $\left\{\begin{array}{l}y=4 x+6 \\ -8 x+2 y=12\end{array}\right.$
5. $\left\{\begin{array}{l}y=x-5 \\ 3 x-3 y=15\end{array}\right.$
6. $\left\{\begin{array}{l}12 x+3 y=12 \\ y=-4 x+5\end{array}\right.$

Solve the system by the method of substitution (example 1, p. 127).
7. $\left\{\begin{array}{l}3 x+y=-3 \\ y=x+5\end{array}\right.$
8. $\left\{\begin{array}{l}5 x-y=5 \\ 5 x-3 y=15\end{array}\right.$
9. $\left\{\begin{array}{l}2 x-y=-1 \\ 3 x-3 y=-3\end{array}\right.$
*10. The length of a rectangle is 8.7 cm more than 3 times the width. If the perimeter of the rectangle is 70.2 cm , what are its dimensions?

Use the elimination method to solve the system (example 3, p.128).
11. $\left\{\begin{array}{l}-4 x+4 y=-8 \\ x-4 y=-7\end{array}\right.$
12. $\left\{\begin{array}{l}2 x+3 y=-1 \\ 2 x-2 y=-6\end{array}\right.$
13. $\left\{\begin{array}{l}5 x+3 y=-6 \\ 3 x-2 y=4\end{array}\right.$
14. $\left\{\begin{array}{l}5 x+3 y=12 \\ 6 x-4 y=-16\end{array}\right.$
15. $\left\{\begin{array}{l}-x+2 y=10 \\ -3 x+6 y=11\end{array}\right.$
*16. A rental car agency charges a flat fee of $\$ 27.00$ plus $\$ 1.50$ per day to rent a certain car. Another agency charges a fee of $\$ 12.00$ plus $\$ 4.00$ per day to rent the same car.
a. Write a system of equations to represent the cost c for renting a car at each agency for d days.
b. Find the number of days for which the costs are the same. (example 2, p. 128)

Solve the system of inequalities by graphing (example2, p. 136).
17. $\left\{\begin{array}{l}y \leq-3 x+3 \\ y>4 x-2\end{array}\right.$
18. $\left\{\begin{array}{l}x \geq-2 \\ y>-3\end{array}\right.$
20. $\left\{\begin{array}{l}y \geq 2 \\ y>|4 x-4|\end{array}\right.$
21. $\left\{\begin{array}{l}y \geq x \\ y>|2 x+1|-3\end{array}\right.$
19. $\left\{\begin{array}{l}y \geq-4 x-4 \\ y \leq \frac{1}{4} x+2\end{array}\right.$
22. Your club is baking vanilla and chocolate cakes for a bake sale. They need at most 20 cakes. You cannot have more than 10 chocolate cakes. Write a system of inequalities to model this system. (example 3, p.137)
23. Which point gives the minimum value of $P=3 x-2 y$? (example $1, p$. 142)

24. Given the system of constraints, name all vertices. Then find the maximum value of the given objective function. (examplen1, p. 142)

$$
\left\{\begin{array}{l}
x \geq 0 \\
y \geq 0 \\
3 x+2 y \leq 12 \\
x+y \leq 5
\end{array}\right.
$$

Maximum for $P=3 x+5 y$
Solve the 3-variable system. (example 1, p. 155 and example 3, p. 157)
25. $\left\{\begin{array}{l}-3 x-2 y-2 z=6 \\ x+y-z=-4 \\ 2 x+3 y-2 z=1\end{array}\right.$
26. $\left\{\begin{array}{l}-2 x+3 y-3 z=-5 \\ 2 x+y-3 z=9 \\ -x+3 y-z=-1\end{array}\right.$
27. $\left\{\begin{array}{l}3 x-2 y+z=9 \\ x-y+4 z=10 \\ 2 x+3 y-z=53\end{array}\right.$.
28. An independent system of two linear equations \qquad has an infinite number of solutions.
a. always
b. sometimes
c. never
29. A system of two linear inequalities \qquad has a solution.
a. always
b. sometimes
c. never
30. The maximum value of a linear objective function \qquad occurs at exactly one vertex of the feasible region.
a. always
b. sometimes
c. never

Algebra II Chapter 3 Test Review

1.

2.

$(3,4)$
3. independent
4. dependent
5. dependent
6. inconsistent
7. $(-2,3)$
8. $(0,-5)$
9. $(0,1)$
10. length $=28.5 \mathrm{~cm}$; width $=6.6 \mathrm{~cm}$
11. $(5,3)$
12. $(-2,1)$
13. $(0,-2)$
14. $(0,4)$
15. no solutions
16. a. $\left\{\begin{array}{l}c=1.50 d+27.00 \\ c=4.00 d+12.00\end{array}\right.$
b. 6
17.

18.

19.

20.

21.

22. Let $x=$ the number of vanilla cakes.

Let $y=$ the number of chocolate cakes.

$$
\left\{\begin{array}{l}
x \geq 0 \\
y \geq 0 \\
x+y \leq 20 \\
y \leq 10
\end{array}\right.
$$

23. $R(1,4)$
24. $(0,0),(4,0),(2,3),(0,5)$; maximum value of P $=25$ at $(0,5)$
25. $(-10,9,3)$
26. $(4,1,0)$
27. $(10,12,3)$

MULTIPLE CHOICE

28. C
29. B
30. B
