Algebra II

Lesson 2-6: Families of Functions

Mrs. Snow, Instructor

Last section we studied the absolute value function. We saw that the general form of an absolute value function is, $y=|x|$, then we saw that this v-shaped function could be translated up, down, left, right, and even made skinnier or wider. This brings us to today's lesson. Our equation $y=|x|$ is called a parent function. It is the simplest form of a given function with a certain set of diagnostic characteristics. Here the diagnostic characteristic of an absolute value function is the tell-tale v -shape graph.

When numbers are placed inside or outside of the absolute value function we learned that these cause a shift of the V. These shifts are known as translations.

Vertex Form of the Absolute Value Function $\boldsymbol{y}=|\boldsymbol{x}-\boldsymbol{h}|+\boldsymbol{k}$

The parent absolute value function is translated horizontally h units and vertically k units.

Examples:

Stretch/Shrink: $\quad y=a|x|$

$y=|x|$ the parent function is centered about the origin
$y=2|x|$
an integer coefficient stretches the absolute value by a factor of a. The \mathbf{y}-value will be "a" times greater. (Makes it look skinnier)

$$
y=\frac{1}{2}|x|
$$

fraction coefficient shrinks the absolute value by a factor of " $\frac{1}{a}$." The y -value will be $\frac{1}{a}$ times greater. (Makes it look fatter)
remember: fat-fractions

Reflection: $y=-|x|$
$y=|x|$ the parent function is centered about the origin, opening upward
$y=-|x|$ the negative causes \mathbf{y} to be equal to negative values, hence it opens downward

When you are negative, you frown that is, a smile upside down or In this case an absolute value upside down.

Combined Transformation: $y= \pm a|x \pm h| \pm k$
Here we can see the parent function shifted up, down, left, right, flipped over, made skinny or widened, OR a combination of any of these transformations

2. vertical translation of \qquad
3. horizontal translation of

