Algebra2

Lesson 2-2: Linear Equations

Mrs. Snow, Instructor

In Algebra I we discovered that a function is considered to be linear if the independent variable increases or decreases at a constant rate. Graphically, a function that graphs out to be a line is a linear function.

Vocabulary

\mathbf{x} - This is the independent variable and is graphed on the horizontal axis.
\mathbf{y} - This is the dependent variable and is the output of the function resulting when an \mathbf{x}-value is put into the linear equation.
x-intercept - The location where a line crosses the x-axis.
y-intercept - The location where a line crosses the y-axis.

Linear equations

1. Standard Form: $A x+B y=C$
2. Slope-Intercept Form: $y=m x+b$
3. Point-Slope Form: $y-y_{1}=m\left(x-x_{1}\right)$
4. Slope of a line: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { rise }}{\text { run }}$

Remember!!: y-intercept has the form ($0, \mathrm{y}$) Example:
state the x and y intercepts for the graph at the right.
x-intercept has the form $(x, 0)$

rate of change - the measure of the steepness of the line. It is ratio of the vertical change over the horizontal change between two points. The rate of change is also called the slope:

$$
\text { rate of change }=\boldsymbol{s l o p e}=\boldsymbol{m}=\frac{\text { change in } f(x)}{\text { change in } x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\boldsymbol{r i s e}}{\boldsymbol{r u n}}=\frac{\boldsymbol{y}_{\mathbf{2}}-\boldsymbol{y}_{\mathbf{1}}}{\boldsymbol{x}_{\mathbf{2}}-\boldsymbol{x}_{\mathbf{1}}}
$$

Example: Does the xy table have a constant rate of change? Does the table model a linear function? Check all the points!

X	0	2	4	6	8	X	0	2	3	5	6
$\mathrm{f}(\mathrm{x}$)	-2	0	6	16	30	y	3	7	9	13	15
What is the slope of a line passing through the points $(0,-3)$ and $(7,-9)$											

Point-Slope Formula

A line passing through point $\left(x_{1}, y_{1}\right)$ with a slope m has the equation:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Write in standard form the equation of each line: slope 2 , through $(4,-2)$

Write in point slope form the equation of the line that passes through the points $(5,1)$ and $(-4,-3)$

Graphing given a point and a slope

A slope makes graphing a line from a given point very easy.

Graph a line through ($-1,-2$) with a slope of $\frac{2}{3}$.

Slope-Intercept Form

Combining the ideas about slope and intercept lead to a general equation form for a line called the slope-intercept form: $y=m x+b$, where m is the slope and b is the y-intercept. The slope-intercept form allows one to graph almost any linear equation in just a few seconds WITHOUT the use of a graphing calculator

Find the slope using slope-intercept form:

$$
3 x+2 y=1
$$

$$
A x+B y=C
$$

We need to readily recognize whether the sign of the slope is positive or negative or something else!

Relationship between special linear systems and their slopes

We are able to find an equation of a line passing through a point and perpendicular to another line if we are given the reference line and the point. Also, we can find a line parallel to another if given the same information.
$(-1,3)$ and perpendicular to the line $y=5 x-3$
$(2,1)$ and parallel to the line $y=\frac{2}{3} x+\frac{5}{8}$

