Algebra II

Lesson 10-6: Translating Conic Sections

Mrs. Snow, Instructor

We have seen with our conics sections that they are not limited to being centered about the vertex, but may be translated about the $x-y$ planes; the center is at (h, k). The table below summarizes the equations for the conics sections both centered at the origin and how a translation will alter the standard form:

Conics Section	Center/vertex at $(0,0)$	Center/Vertex at (h, k)	Foci
$\begin{gathered} \text { Circle } \\ \text { (10.3) } \end{gathered}$	$\begin{gathered} \text { Center }(0,0) \\ x^{2}+y^{2}=r^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Center }(h, k) \\ (x-h)^{2}+(y-k)^{2}=r^{2} \end{gathered}$	NA
Ellipse (10.4) $a^{2}-b^{2}=c^{2}$	$\begin{aligned} & \text { Center }(0,0) \\ & \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\ & \frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1 \end{aligned}$	$\begin{gathered} \text { Center }(h, k) \\ \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \\ \frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1 \end{gathered}$	$\begin{aligned} & (h \pm c, k) \\ & (h, k \pm c) \end{aligned}$
Hyperbola (10.5) $a^{2}+b^{2}=c^{2}$	Center (0,0) $\begin{aligned} & \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\ & \frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1 \end{aligned}$	$\begin{gathered} \text { Center }(h, k) \\ \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \\ \frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1 \end{gathered}$	$\begin{aligned} & (h \pm c, k) \\ & (h, k \pm c) \end{aligned}$
$\begin{gathered} \text { Parabola } \\ \text { (10.2) } \\ \|a\|=\frac{1}{4 c} \end{gathered}$	$\begin{gathered} \text { Vertex }(0,0) \\ y=a x^{2} \\ x=a y^{2} \end{gathered}$	$\begin{gathered} \text { Vertex }(h, k) \\ y=a(x-h)^{2}+k \\ x=a(y-k)^{2}+h \end{gathered}$	$\begin{aligned} & (h, k \pm c) \\ & (h \pm c, k) \end{aligned}$

Let's do a review of our translation problems:

Write an equation of an ellipse with a center of (1, -4), horizontal major axis of length 10 and minor axis of length 4

We need to understand some terminology first.

1. Length of the major axis: that is from vertex to vertex or $\mathbf{2 a}$, we need just a
2. Identify the values of (h, k)
3. Which is the major axis?
4. Plug into the standard formula.

Write the equation of a hyperbola with vertices $(2,-1)$ and $(2,7)$ and foci $(2,10)$ and (2,-4).	1. Sketch the points so you know the orientation of the hyperbola. Vertices show a vertical orientation. 2. Where is the midpoint of a line through the vertices? Use the midpoint formula to find y. 3. What is the foci? With a and c what is b ?
Identify the conic section with the following equation: $x^{2}+y^{2}-12 x+4 y=8$	1. Group like terms together (x and y) and locate the constant on the right side of the equation 2. Complete the square $1 / 2$ of the linear term coefficient squared, add to both sides of the equation 3. If we divide through by the constant to get a 1 for the standard form of an ellipse we will see that the axes are equal, hence we have a circle with a radius of $\sqrt{48}$

Try: $4 x^{2}+9 y^{2}+16 x-54 y=-61$

After we group like terms together and set about to complete the square, we need to understand how to handle a coefficient in front of the quadratic term.

1. Factor the leading coefficient out, if at all possible. Square $1 / 2$ the linear coefficient and then multiply that product with outside factor. For $x, 1 / 2$ of 4 squared is 4 multiply by the outside 4 . What is added to the left, add to the right...
2. follow through and simplify
3. What is the conic?

In Algebra I and in the $1^{\text {st }}$ semester of algebra II we calculated the intersection of two lines; i.e. solving a system of equations. Well, system of equations may involve conic equations; they are not reserved for linear equations.

Solve the system of equations by graphing:

$\left\{\begin{array}{l}x^{2} \\ 16 \\ 7 x+\frac{y^{2}}{49}=1 \\ 4 y=28\end{array}\right.$

$$
\left\{\begin{array}{c}
x^{2}+y^{2}=36 \\
-x+y=6
\end{array}\right.
$$

