Algebra II Lesson 10-6: Translating Conic Sections Mrs. Snow, Instructor

We have seen with our conics sections that they are not limited to being centered about the vertex, but may be translated about the x - y planes; the center is at (h, k). The table below summarizes the equations for the conics sections both centered at the origin and how a translation will alter the standard form:

Conics Section	Center/vertex at (0,0)	Center/Vertex at (h, k)	Foci
Circle (10.3)	Center (0,0) $x^{2} + y^{2} = r^{2}$	Center (h, k) $(x - h)^2 + (y - k)^2 = r^2$	NA
Ellipse (10.4)	Center (0,0) $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ $\frac{x^{2}}{x^{2}} + \frac{y^{2}}{y^{2}} = 1$	Center (h, k) $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ $(x-h)^2 - (y-k)^2$	$(h \pm c, k)$ $(h, k + c)$
$a^2 - b^2 = c^2$	$\frac{a}{b^2} + \frac{b}{a^2} = 1$	$\frac{\frac{(a-b)}{b^2} + \frac{(a-b)}{a^2} = 1}{\text{Center}(b,b)}$	
Hyperbola (10.5)	$\frac{x^2}{a_2^2} - \frac{y^2}{b_2^2} = 1$	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	$(h \pm c, k)$
$a^2+b^2=c^2$	$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$	$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$	$(h, k \pm c)$
Parabola (10.2) $ a =rac{1}{4c}$	Vertex (0,0) $y = ax^2$ $x = ay^2$	Vertex (h, k) $y = a(x - h)^2 + k$ $x = a(y - k)^2 + h$	$(h, k \pm c)$ $(h \pm c, k)$

Let's do a review of our translation problems:

Write an equation of an ellipse with a center of (1, -4), horizontal major axis of length 10 and minor axis of length 4	We need to understand some terminology first.
	1. Length of the major axis: that is from vertex to vertex or 2a , we need just a
	 Identify the values of (h,k) Which is the major axis?
	4. Plug into the standard formula.

Write the equation of a hyperbola with vertices (2,-1) and (2,7) and foci (2,10) and (2,-4).	 Sketch the points so you know the orientation of the hyperbola. Vertices show a vertical orientation. Image: A state of the hyperbola of t
Identify the conic section with the following equation: $x^2 + y^2 - 12x + 4y = 8$	 Group like terms together (x and y) and locate the constant on the right side of the equation Complete the square ½ of the linear term coefficient squared, add to both sides of the equation If we divide through by the constant to get a 1 for the standard form of an ellipse we will see that the axes are equal, hence we have a circle with a radius of √48

Try: $4x^2 + 9y^2 + 16x - 54y = -61$	After we group like terms together and set about to complete the square, we need to understand how to handle a coefficient in front of the quadratic term. 1. Factor the leading coefficient out, if at all
	possible. Square $\frac{1}{2}$ the linear coefficient and then multiply that product with outside factor. For x, $\frac{1}{2}$ of 4 squared is 4 multiply by the outside 4. What is added to the left, add to the right
	2. follow through and simplify
	3. What is the conic?

In Algebra I and in the 1st semester of algebra II we calculated the intersection of two lines; i.e. solving a system of equations. Well, system of equations may involve conic equations; they are not reserved for linear equations.

Solve the system of equations by graphing:

