Algebra II - Chapter 10 Test ReviewPlease do all work on a separate paper.REVIEWS ARE REQUIRED FOR RETEST ELIGIBILITY. NO LATE REVIEWS ACCEPTED

1. Simplify $\sqrt[3]{24a^7b^{12}}$. Assume that all variables are positive.

2.
$$\frac{a^2 - 2a - 35}{a^2 + 12a + 35}$$

3.
$$\frac{d^2 + 10d + 24}{d^2 + d - 12} + \frac{1}{d}$$

4. $3\log_{\theta}\nu + 6\log_{\theta}x$

#5 – 7. Graph the conic section.

5.
$$(x-6)^2 + (y+3)^2 = 49$$

6. $x-5 = \frac{1}{8}(y+3)^2$.
7. $y+4 = \frac{1}{24}(x+2)^2$.

- 8. Write an equation for a graph that is the set of all points in the plane that are equidistant from the point F(-2, 0) and the line x = 2.
- 9. Write an equation for a graph that is the set of all points in the plane that are equidistant from the point F(0, 9) and the line y = -9.
- 10. Write an equation of a parabola with a vertex at the origin and a focus at (0, 7).
- 11. Write an equation of a parabola with a vertex at the origin and a focus at (-5, 0).
- 12. Identify the vertex, focus, and directrix of the graph of $y = \frac{1}{8}(x+3)^2 + 4$.
- 13. Identify the vertex, focus, and directrix of the graph of $x = \frac{1}{20}(y-5)^2 + 2$.
- 14. Write an equation of a circle with center (3, 3) and radius 5.
- 15. Write an equation for the translation of $x^2 + y^2 = 25$, 4 units right and 6 units up.
- 16. Write an equation for the translation of $x^2 + y^2 = 9$, 7 units left and 2 units down.
- 17. Find the center and radius of the circle with equation $(x + 8)^2 + (y 6)^2 = 36$.
- 18. Find the center and radius of the circle with equation $(x-2)^2 + (y+7)^2 = 25$.
- 19. Write an equation in standard form of an ellipse that has a vertex at (-3, 0), a co-vertex at (0, -2), and is centered at the origin.
- 20. Write an equation of the ellipse with foci at $(0, \pm 5)$ and vertices at $(0, \pm 9)$.
- 21. Write an equation of the ellipse with foci at $(\pm 6, 0)$ and vertices at $(\pm 8, 0)$.
- 22. Write an equation for an ellipse with center (-2, 3), vertices (-2, 8) and (-2, -2), and co-vertices (-6, 3) and (2, 3). **Graph the ellipse.**
- 23. Write an equation of an ellipse with center (-4, 5), vertical major axis of length 12, and minor axis of length 4. Graph the ellipse.

- 24. Find the foci of the graph $\frac{x^2}{36} \frac{y^2}{16} = 1$.
- 25. Find the equation of a hyperbola with a = 31 units and c = 76 units. Assume that the transverse axis is horizontal.
- 26. Write an equation of a hyperbola with a vertex at (0, 4) and a focus at (0, 5). Assume the transverse axis is vertical and the center is at the origin. **Graph the hyperbola.**
- 27. Write an equation of a hyperbola with vertices (8, -4) and (-4, -4), and foci (12, -4) and (-8, -4). Graph the hyperbola.

28 – 35. Identify the conic section (circle, ellipse, hyperbola, or parabola).If it is a parabola, give the vertex. If it is a circle, give the center and radius. If it is an ellipse or a hyperbola, give the center and foci.

28. $x^2 + y^2 + 4x + 4y = 28$ 32. $5x^2 - 6y^2 + 50x + 60y - 55 = 0$ 29. $y^2 - 4x + 4y - 8 = 0$ 33. $5x^2 + 10y^2 + 40x + 40y + 70 = 0$ 30. $7x^2 - 3y^2 + 70x + 18y + 127 = 0$ 34. $y^2 - 2x - 10y + 19 = 0$ 31. $2x^2 + 12y^2 - 20x - 48y + 74 = 0$ 35. $x^2 + y^2 - 6x - 8y = 0$

Chapter 10 Review Answer Section

1.
$$2a^{2}b^{4}\sqrt[3]{3a}$$

2. $\frac{a-7}{a+7}; a \neq -5, a \neq -7$
3. $\frac{d+16}{d-3}$

4.
$$\log_{\delta}(v^3x^6)$$

7.	
8.	$x = -\frac{1}{8}y^2$
9.	$x = \frac{1}{36} y^2$
10.	$y = \frac{1}{28} x^2$
11.	$x = -\frac{1}{20} y^2$
12.	vertex (-3, 4), focus (-3, 6), directrix at $y = 2$
	vertex (2, 5), focus (5, 7), directrix at $y = -3$
14.	$(x-3)^2 + (y-3)^2 = 25$
15.	$(x-4)^2 + (y-6)^2 = 25$
16.	$(x+7)^2 + (y+2)^2 = 9$
17.	(-8, 6); 6
	(2, -7); 5
	$\frac{x^2}{9} + \frac{y^2}{4} = 1$

22.

 $\frac{x^2}{961} - \frac{y^2}{5776} = 1$

- 28. circle; center (-2, -2); radius = 6
- 29. parabola; vertex (-3, -2)
- 30. hyperbola with center (-5, 3), foci at $(-5 \pm \sqrt{10}, 3)$
- 31. ellipse with center (5, 2), foci at $(5 \pm \sqrt{10}, 2)$
- 32. hyperbola with center (-5, 5), foci at $(-5 \pm \sqrt{11}, 5)$
- 33. ellipse with center (-4, -2), foci at $(-4 \pm \sqrt{5}, -2)$
- 34. parabola; vertex (-3, 5)
- 35. circle; center (3, 4); radius = 5