Algebra 2 Lesson 1-1: Properties of Real Numbers Mrs. Snow, Instructor

There are five (5) sets of numbers that form the foundation for all of the mathematics. The three dots (...) is a notation used to mean "and so on and so on into infinity." The following diagram shows their relationships to one another:

Rational Numbers (Q)	Irrational Numbers
$0.5 - \frac{10}{11} 3.6 \overline{0.3} -\frac{1}{2}$	$\sqrt{17}$
Integers (Z) 4321.0.1.2.3	<i>π</i> ≅ 3.141592654
Whole Numbers (W)	√ <u>2</u> ≅ 1.4114213562
0 1 2 3 4	<i>e</i> ≅ 2.718281828 −√11
Natural Numbers (N)	
123456	

Notice that some numbers can belong to several sets of numbers while others can belong to only one set of numbers. For example, 3 can belong to all of the sets of numbers <u>except</u> Irrational Numbers. Why?

The number 0.25 can belong to only the set of real numbers and ______numbers. Then number $\sqrt{11}$ can only belong to the ______ and real numbers.

Number sets can be represented in several ways:

Words: The set of numbers on a six-sided die are 1 through 6.

Roster: {1, 2, 3, 4, 5, 6}

Interval: [1,6] *Number Line:* -4 -3 -2-1 0 1 2 3 4 5 6

Set Builder notation: $\{x \mid x \text{ is an integer and } 1 \le x \le 6\}$ read as "the set of all x's such that x is an integer between 1 and 6 inclusive."

Interval notation: [or] means the number is included, while (or) means number is not included.

 Classify each number to the sets of number it belongs. a) -2.4 b) √30 c) 2π d) -5/2 2. Order the list of numbers from least to greatest. 5, √17, -2.3, -23/7, 2π/3, 6.3333 	5. Fill in the number lines. a) $-2 \le x \le 4$ 4 $-5 -4 -3 -2 -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6$ b) The set of integers between -3 and 5. 4 $-5 -4 -3 -2 -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6$ c) $y \ne 2$.
7 3	-5 -4 -3 -2 -1 0 1 2 3 4 5 6
3. a) Rewrite $x \ge -1$ in interval notation. b) Rewrite [-2,3] as a number line. 4 + + + + + + + + + + + + + + + + + + +	 6. Use a number line to represent [-1,2)and (3, +∞) on a number line. 6. Use a number line to represent [-1,2)and (3, +∞) on a number line. 6. Use a number line. 6. Use a number line. <l< td=""></l<>
 4. Answer with True or False. a) Every integer is a whole number b) Every integer is a rational number c) Every irrational is not a whole number. d) A repeating decimal like 2.3333 is an example of a rational number. e) A number like ⁴/₀ is an irrational number. 	 9. The formula for the area of a circle is: π r² Will the area for circle ever be a rational number? Briefly explain. 10. Will the product of two irrational numbers ever be rational? Briefly explain.